

This project has received funding from the European Union’s Horizon 2020 research and
innovation program under grant agreement No 780167

Ecosystem for Services based on integrated Cross-sectorial Data
Streams from multiple Cyber Physical Products and Open Data Sources

CPP DATA PROVIDER GUIDE

(CROSS-SECTORIAL
ORIGINAL EQUIPMENT MANUFACTURER)

Cross-CPP MARKETPLACE
DEVELOPER GUIDE

1

Introduction
Data Provider Developer Guide offers data providers the information needed to connect a
Company Backend system to the Cross-CPP Cloud Storage to share CPP data in Data Packages
using Common Industrial Data Model (CIDM)

Purpose
This guide aims to help developers from an Original Equipment Manufacturer (OEM from now
on) company about how to develop a Company Backend system capable of sharing data with
the Cross-CPP solution.

Audience
This guide is meant for and solely for developers of OEM companies that wants to share data
from CPP Owners through the Cross-CPP solution.

Scope
The content of this guide is meant to be taken into consideration only when developing a
Company Backend system (CB from now on) looking to work with Cross-CPP Marketplace and
will only cover functionalities meant to be used by those developers.

Cross-CPP team does not take responsibility on bad use of the application or the data provided
when not following the instructions given in this guide.

Troubleshooting
For any questions or inquiries about the use of the Cross-CPP Cloud Storage API or SDK, or the
contents of it or this guide, or if you find there is no content in this guide for some functionality
please forward it to: marketplace-support@cross-cpp.eu.

Contact
Cross-CPP Project website: https://cross-cpp.eu

Cross-CPP Marketplace: https://datagora.eu

Marketplace support: marketplace-support@cross-cpp.eu

Context Monitoring and Extraction Module (CME): context-support@cross-cpp.eu.

mailto:marketplace-support@cross-cpp.eu
mailto:marketplace-support@cross-cpp.eu
https://cross-cpp.eu/
https://datagora.eu/
mailto:marketplace-support@cross-cpp.eu
mailto:marketplace-support@cross-cpp.eu
mailto:context-support@cross-cpp.eu

2

Contents
Introduction .. 1

Purpose .. 1

Audience .. 1

Scope ... 1

Troubleshooting ... 1

Contact ... 1

Contents .. 2

Guide .. 4

1. Sending Data Process .. 4

1.1. Register the Company Backend into the Cloud Storage ... 5

1.2. CPP Owners registration ... 5

1.3. Data Storage ... 6

 Time-series ... 8

 Histogram ... 8

 Geo-histogram ... 9

 Event based ... 9

 General purpose ... 9

 Basic CPP information .. 9

2. Common Industrial Data Model (CIDM)... 11

2.1. Model Architecture ... 11

2.2. Signal Layer Specification .. 11

2.3. Measurement Channel Layer Specification .. 13

2.4. Data Package Layer Specification .. 17

2.5. Measurement Channel Catalogue ... 21

3. Cloud Storage API Specification ... 23

4. SDK ... 24

5. Context Monitoring and Extraction (CME) .. 25

5.1. Context Models ... 25

 Basic principles for context modelling ... 25

 Generic context model ... 27

 Creating/Editing of context models ... 28

5.2. Reasoning Rules Configuration ... 28

3

 Extraction rules configuration file ... 28

 Source code customisation .. 31

5.3. Updating the context model and measurement channel list .. 32

F.A.Q. ... 33

Cross-CPP data-marketplace .. 33

Cross-CPP data model ... 33

Cross-CPP marketplace components .. 34

Glossary ... 35

Figures ... 37

Tables ... 37

Listings .. 37

Annex... 38

OpenAPI Specification of the Company Backend REST API (yaml)... 38

CIDM v1.2.1 jsonSchema .. 52

4

Guide
Cross-CPP Marketplace Company Backend (CB) developers guide offers five distinct sections for
Data Providers Company Backend (CB):

• Sending Data Process: complete workflow of data sharing
• Common Industrial Data Model (CIDM): Cross-CPP data model specification
• Cloud Storage API: REST API through which the data is sent to be stored in the Cloud

Storage (CS) and made available for the Cross-CPP Marketplace.
• SDK
• Context Monitoring and Extraction (CME)

1. Sending Data Process
This process describes the required steps a CB needs to perform in order to send data to the CS.

1. Register Company Backend into the Cloud Storage
a. CB must be CIDM compliant
b. CB receives API key to operate with the CS

2. CPP Owners registration
a. CPP Owners must register on their own
b. Registered CPP owners must give write access

3. Data Storage

Figure 1. Sending Data process

5

1.1. Register the Company Backend into the Cloud Storage
The first step for the OEM is to register the Company Backend (CB) into the Cloud Storage (CS).

For this, the OEM have to provide the company name and a URL, that also will be used to receive
notifications,

The administrator of the Cloud Storage will register a CIDM compliant Company Backend1 by
means of the Admin panel of the Cloud Storage. After the registration, the CB administrator will
receive the APIKEY to configurate CB-CS communication.

1.2. CPP Owners registration
CPP Owners (vehicle or building owners) have the right to grant access to write their own data
coming from the Company Backend into the Cloud Storage.

CPP Owners can grant write permission to the CB through the CS frontend: The screen capture
shows the CPP Owner interface to grant write access permission. Once the permission is granted
the name of the OEM Company is green. CB would receive the vault-id to start sending data to
the CS. The vault id is the identification of the secure owner data space related to a vehicle or
building.

Figure 2. Cloud Storage Permissions View.

1 A CIDM compliant Company Backend, is a Company Backend that implements the APIs provided by the
Cloud Storage (CIDM compliant) and can therefore store CPP stream data in the Cloud Storage in the CIDM
format.

6

1.3. Data Storage
Once the data owner grants the CB write permission, the CB can send data to the CS. The CB uses
the Data Storage API endpoint to send data in the CIDM format. The request must provide the
OEM_APIKEY in order to authenticate the CB and to check the authorization of the vault-id of the
data-package.

This is the main request for Data Providers as is the entry point of data collected from their
CPPs.

Note that the request body is always an array, and every package is treated separately, meaning
the array can contain any amount of data from different signals and data types.

REQUEST PUSH DATA PACKAGE

Method POST

Url https://cloudstorage-api.datagora.eu/api

Endpoint /datapackages

Headers Authentication {{oem_apikey}}
Content-type application/json

Body [

 {
 "cvim-version": "1.2.0" // string
 "vault-id": "---", // uuid
 "measurement-channel-id": "151", // string
 "type": "histogram", // enumeration string
 "timestamp-start": "2019-05-20T17:01:32.402330Z", // date-time
 "timestamp-stop": "2019-05-20T17:18:00.402330Z", // date-time
 "data": [*], // array of values
 "cpp-type": "vehicle", // enumeration string
 "trip-id": "---", // uuid
 "sumbmit-time": "2019-05-20T17:19:00.402330Z ", // date-time
 "expiration-date": "2018-12-31T23:59:00Z", // date-time
 "mileage-start": xx, // number
 "mileage-stop": xx, // number
 "room-id": "---", // string
 "geo-bounding-box": {
 "latitude-max": 51.517008, // number
 "longitude-min": 7.4256, // number
 "longitude-max": 7.48278, // number
 "latitude-min": 51.501453 // number
 },
 "location": {
 "latitud": 51.517008, // number
 "longitude": 7.4256 // number
 },
 "data-masiking-active": false // boolean
 "signatures": [// array of objects about security signatures
 {
 "signatory": "OEM", // string
 "signature": "Rr---------4Zw==", // encrypted string
 "checksum": "4f3-------d71" // string
 }

https://cloudstorage-api.datagora.eu/api

7

],
 "data-ownership-information": {
 "data-privacy-level": "public", // enumerated string
 ["public", "shared", "private"]
 "data-stakeholders": [
 {
 "status": "Creator", // string
 "name": "CPP owner name" // string
 },
 { ... }
],
 "copyright-stakeholders": [
 {
 "status": "Creator", // string
 "name": "CPP owner name" // string
 },
 { ... }
],
 "privacy-veto-rights": {
 "consent-level": "public", // enumerated string
 ["public", "shared", "private"]
 "data-format": "time-series", // enumerated string
 ["time-series", "histogram"]
 "jurisdiction": "Europe", // enumerated string
 ["Europe", "any"]
 "storage-constraint": "OEM storage" // enumerated string
 ["OEM storage", "Personal storage"]
 }
 }
 }
]

Table 1. Push Data Package request

Body explanation (for each data package):

• vault-id: identificatory of the cloud storage vault belonging to the data owner
• measurement-channel-id: channel to sample the data received
• type: type of data. Must be the same as the type of channel (time-series, histogram, geo-

histogram, event-based, general-purpose, basic-cpp-information)
• data: array of data. The entities expected depend on the type of data
• geo-bounding-box / location: squared boundaries of the location, or exact location, in

which the data was generated
• signatures: encrypted security signatures from the OEM
• data-ownership-information: optional object including the information relative of the

nature of the data, including privacy levels and rights, involved stakeholders and
copyright entities.

The body of the request is an array of CIDM data-packages. Even though the CIDM specification
requires the “submit-time” and “datapackage-id” you don’t need to provide them as the CS will
provide those values automatically when the data-package is saved. The CS will validate that the
data-packages are CIDM compliant and response OK.

8

Every data-package must provide the “vault-id” in order to assign the data-package to the proper
storage space of the user. The “type” field specifies the type of data package, the main types are
“time-series”, “basic-cpp-information”, “event-based”, etc (see CIDM section 2 for further details).
The “measurement-channel-id” specifies the signals that the data-package collects (you can
check the list of measurement-channels available on the Marketplace Catalogue or ask the
administrator to create a new one that fits to your needs). The format of the “data” object will
depend on the “type” and the “measurement-channel-id” of the data-package.

 Time-series
{
 "type": "time-series",
 "number-of-samples": 3 // integer (required)
 "data": [// object array (required)
 {
 "timestamp": "2019-05-20T17:08:29.607343Z", // date-time
 "value": [// values array
 * // value per channel signal
]
 },
 { … },
],
 "statistic-properties": { // object (optional)
 "min": 0, // number
 "max": 3, // number
 "average": 2, // number
 "histogram": { // object
 "measurement-channel-id": "2" // string
 "data": [// array

 2, // number
 ...
]
 }
 }
}

Listing 1. Time-series type data package

* "data" length must be equal to "number-of-samples" value

 Histogram
{
 "type": "histogram",
 "data": [// number or number arrays array (required)
 1, // number
 …
]
}

Listing 2. Histogram type data package

9

 Geo-histogram
{
 "type": "geo-histogram",
 "data": [// object array (required)
 {
 "tileY": 21790, // number
 "tileX": 34123, // number
 "histogram": [// number array
 44, // number
 ...
]
 },
 { ... },
]
}

Listing 3. Geo-histogram type data package

 Event based
{
 "type": "event-based",
 "data": [// object array (required)
 "event-type": "real-time-event" // enumeration string *
 "event-data": {
 "event-time-stamp": "2019-05-20T17:08:29.607343Z", // date-time
 "event-datapackages": [DataPackage model] // DataPackage object array
 "value": "" // string
 }
]
}

Listing 4. Event-based type data package

* "real-time-event", "trigger-event", "threshold-event"

 General purpose
{
 "type": "general-purpose",
 "data": { // object (required)

 "key": "value" // configured key: value
 }
}

Listing 5. General purpose type data package

 Basic CPP information
{
 "type": "basic-cpp-information",
 "data": { // object (required)
 "VehicleColor": "red" // configured key: value
 }
}

10

Listing 6. Basic CPP information type data package

Responses:

Code Description
200 OK Request successful
400 Bad Request Query was malformed or incorrect
401 Unauthorized Missing authorization token

Unauthorized role
Unauthorized user

404 Not found Something requested does not exist
500 Internal Server Error Something else went wrong

11

2. Common Industrial Data Model (CIDM)
Cross-CPP uses the CIDM as its data model. All data pushed into Cross-CPP Marketplace must
follow this model.

2.1. Model Architecture
The CIDM architecture consist of three layers:

- The Signal layer consisting of the information provided by the CPP devices like vehicles
or smart buildings. Signals are generated by sensors that observe the environment and
produce data, as they detect physical and chemical phenomenon, for example, speed,
temperature, charge state level, etc.

- The Measurement Channel layer providing signals data aggregation. The data needs to
be pre-processed since raw sensor data exceeds the available storage and transferring
capacity, to reduce the size of data down-sampling and histograms methods are
provided.

- The data layer aggregating data inside data packages to store and transfer. One data
package contains data from exactly one signal measured with one Measurement
Channel. In addition to the actual data, Data Packages contain header information (“meta
data”). This header information provides ownership of the data and gives quality of signal
indications by OEM signatures or describes parameters of the measurement (e.g. time,
rough position estimate, etc.).

Figure 3: Layered High-level View of the Common Industrial Data Model (CIDM)

2.2. Signal Layer Specification
Sensors are the perception organs of CPP devices like vehicles and buildings. It is their main duty
to detect physical phenomenon and chemical quantities by transferring them into electrical
signals. The signal layers describe different types of signals and formats represented in the
system. A new property is needed to group signals regarding the signal source type, cpp-type.
Figure 4 shows the UML modelling of the signals for CIDM.

12

Figure 4. Signal UML Model.

The cpp-type is a required property that must be one of the two values, “vehicle” or “building”.
The table below shows the complete definition of the Signal.

Property Occurrence Type Format Description

Common Properties
id Required String Unique Identifier of the

Signal
name Required String Name of the Signal
cpp-type Required String one of:

- vehicle
- building

Type of the CPP

type Required String one of:
- numeric
- enumeration
- information
- general-
purpose

Type of the Signal

format Optional String Signals representation
format

sample-rate Required Numeric double Sample rate in Hz
(Samples per Second).
Must be larger than or
equal to zero.

comment Optional String Description of the signal
Numeric Signal

13

Property Occurrence Type Format Description

type Required String “numeric” Type of the Signal needs to
be numeric

format Required String <numeric
formats>

Signal’s numeric
representation (e.g. uint8,
double, etc.)

min Required Number <according to
format>

Minimum Signal value

max Required Number <according to
format>

Maximal Signal value

resolution Required Number <according to
format>

Signals resolution

Unit Required String Unit of the Signal (e.g. ºC)
Enumeration Signal

type Required String “enumeration” Signal’s type attribute

needs to be “enumeration”
items Required Array String String array with possible

Signal values
Information Signal

type Required String “information” Signal’s type attribute

needs to be “information”
format Required String Signals representation

format (e.g. VIN, etc.)
General Purpose Signal

type Required String “general-

purpose”
Signal’s type attribute
needs to be “general-
purpose”

* Optional Any No May be extended with
further attributes

Table 2. Signal property definition.

2.3. Measurement Channel Layer Specification
The measurement layer defines how sensor signals are captured and processed. One
Measurement Channel describes how samples from one (or more - in the case of
multidimensional histograms) sensor signal are aggregated and measured. Figure 5 shows the
Measurement Channel UML model.

14

Figure 5. Measurement Channel UML Model.

The basic CPP information channel provides static information that is not measured by sensors
but provides information about the CPP device, like the colour of a vehicle, the number of floors
of a building, the identification number of a car, etc.

The event-based measurement channel provides information of events that occurs when the
value of a measurement gets to a specific value (real-time-event) or when the value passes a
specific threshold (threshold) and the last one that provides information about the event and
the data-packages that have triggered the event. The table below details the measurement
channel specification.

Property Occurrence Type Format Description

Common Properties

id Required String No Unique Identifier of the

Measurement Channel
name Required String No Name of the

Measurement Channel
type Required String one of:

- time-series
- histogram
- geo-histogram
- general-purpose
- event-based
- basic-cpp-
information

Type of Measurement
Channel

Comment Optional String No Description of the signal

15

Property Occurrence Type Format Description

Time Series Measurement Channel

type Required String “time-series” Type of the

Measurement Channel
needs to be time-series

format Required String Data type format of the
samples

dimension Optional Number uint32 Dimension of the Time-
series. If dimension is not
given, one-dimensional is
assumed

capture-
interval

Required
when on-
change is
false

Number double Capture interval between
two samples in seconds.
Only required, when on-
change is false.

on-change Required Boolean Does Measurement-
Channel only record
changes in signal

sample-
strategy

Required String one of:
- min
- max
- average
- last-known-value

Signal sampling strategy

signal Required Object Array of Signal
Object

See section 6.1.2 for
Signal object definition

Histogram AND geo-Histogram Measurement Channel

type Required String one of:

- histogram
- geo-histogram

Type of the
Measurement Channel
needs to be histogram or
geo-histogram

aggregation-
strategy

Required String one of:
- time
- count
- min
- max

Histogram values
aggregation strategy

capture-
interval

Required Number double Capture Interval of one
Histogram. Needs to be
larger than zero. +Infinity
is valid (see IEEE 754).

dimensions Required Number uint32 Dimensions of the
Histogram

bins Required Array Bin-Configuration
Object

Array of bin
configurations. Array

16

Property Occurrence Type Format Description

needs to contain exactly
one configuration for
every dimension/axes of
the histogram

Geo-Histogram Measurement Channel

type Required String “geo-histogram” Type of the

Measurement Channel
needs to be geo-
histogram

geo-
resolution

Required Numeric double Zoom level of the geo-
histogram

Basic CPP Information Measurement Channel

type Required String “basic-cpp-

information”
Type of the
Measurement Channel
needs to be basic-cpp-
information

signal Required Object Signal Object See section for Signal
object definition

Event Based Measurement Channel

type Required String “event-based” Type of the

Measurement Channel
needs to be event-based

format Required String Data type format of the
samples

event-
sample-
strategy

Required Event
Sample

one of:
- real-time-event
- trigger-event
- threshold-event

Event sampling strategy

comment Optional String No Description of Event
Strategy

General Purpose Measurement Channel

type Required String “general-purpose” Type of the

Measurement Channel
needs to be general-
purpose

signal Required Any See section 6.1.2 for
Signal definition

Table 3: Measurement channel definition

17

2.4. Data Package Layer Specification
Data Packages contain the actual data of Signal measurements. As Signals are the information
providers and Measurement Channels define the process of data acquisition from those Signals,
Data Packages provide a structure for storing the data. In addition, they provide meta / header
information containing time of recording, data ownership information, etc. Data Packages
contain data from exactly one Measurement Channel. This leads to six different types of Data
Packages that are defined similar as the Measurement Channels:

• Time Series Data Package
• Histogram Data Package
• Geo-Histogram Data Package
• Event based data Package
• Basics CPP information Data Package
• General Purpose Data Package

Figure 6. Data Package UML Model.

18

The data-package definition includes cpp-type to indicate is the data-package belongs to a
“building” or a “vehicle” cpp and definition of data-package type, such as basics-cpp-information
data-package and the event-based data-package.

The data of basics-cpp-information data-package depends of the signal type definition of the
measurement channel - numeric, enumeration, information or general-purpose.

Event-based data-package has an additional property, “event-sample-strategy”, to indicate three
different type of event, real-time, trigger and threshold. According to the type of event, the “data”
object has two mandatory properties, “timestamp” and “value”, and an optional property named
“datapackages” that is an array of the data-packages that triggers the “trigger-event”.

The “building” CPP devices provides a set of sensors distributed along the rooms of the building,
in order to identify the devices of the same room a new property has been included, “room-id”.

Property Occurrence Type Format Description

Common Properties

data-package-
id

Required String UUID Identifier of the Data
Package. Unique per Cloud
Storage Vault, Set by Cloud
Storage Provider

cvim-version Required String version The name of the property is
for backward compatibility
with CVIM2. Must be set to
1.2.1

type Required String one of:
- time-series
- histogram
- geo-histogram
- general-
purpose
- event-based
- basic-cpp-
information

Type of the Data Package

vault-id Required String UUID ID of the Cloud Storage
Vault, where the data is
stored in.

cpp-id Optional String any ID of the CPP
cpp-type Required String one of:

- vehicle
- building

Type of the CPP

trip-id Optional String any Trip-ID of the User

2 Common Vehicle Information Model: the basis for the current CIDM

19

Property Occurrence Type Format Description

room-id Optional String any ID of the room in a building
where the measurement
data was collected

measurement-
channel-id

Required String Identifier of the
Measurement Channel
whose data is inside this
data package

mileage-start Optional Number double Mileage at the start of the
measurement in kilometres
(km)

mileage-stop Optional Number double Mileage at end of
measurement (km)

geo-bounding-
box

Optional Object Geo-Bounding-
Object

Geographic bounding box

location Optional Object Location-Object Single location including
latitude and longitude

oem-
certification

Optional Object OEM-
Certification-
Object

OEM Certification

data-
ownership-
information

Optional Object Ownership-
Information -
Object

Data Ownership Information

expiration-date Optional String date-time Data expiration date
data-masking-
active

Optional Boolean Indicates status of data-
masking (true = active)

Time Series Data Package

type Required String “time-series” Type of the Measurement

Channel needs to be time-
series

timestamp-
start

Required String date-time Measurement start time

timestamp-
stop

Required String date-time Measurement stop time

number-of-
samples

Required Number uint32 Number of samples that are
stored in data

statistic-
properties

Optional Object statistic-
properties-object

Provides statistic properties
about the data

data Required Array time-series key-
value-pair -
object

Array of time-series-data
Objects. The size of the
array mist equal number of
samples

Histogram Data Package

20

Property Occurrence Type Format Description

type Required String histogram Type of the Measurement
Channel needs to be
histogram

timestamp-
start

Required String date-time Measurement start time

timestamp-
stop

Required String date-time Measurement stop time

data Required (Multi-
dimensi
onal)
Array

Number Array containing he bin
counts. Size of array must
match the dimension and
bin configuration of the
related Measurement
Channel. Number format
depends on Histogram
aggregation-strategy

Geo-Histogram Data Package

type Required String geo-histogram Type of the Measurement

Channel needs to be geo-
histogram

timestamp-
start

Required String date-time Measurement start time

timestamp-
stop

Required String date-time Measurement stop time

data Required (Multi-
dimensi
onal)
Array

Number Array containing the bin
counts. Size of array must
match the dimension and
bin configuration of the
related Measurement
Channel. Number format
depends on Histogram
aggregation-strategy.
The outer most dimension
is the geo-dimension. It
must match in its size the
size of the geo-tiles array.

geo-tiles Required Array Geo-Tile Object Array of geo-tile objects.
Only visited tiles are
included.

Basic CPP Information Data Package

type Required String “basic-cpp-

information”
Type of the Measurement
Channel needs to be basic-
cpp-information

21

Property Occurrence Type Format Description

Timestamp Required String date-time Measurement date time
data Required Any Data depends on the type of

signal of the measurement
channel

Event Based Data Package

type Required String “event-based” Type of the Measurement

Channel needs to be event-
based

Timestamp Required String date-time Measurement date time
event-sample-
strategy

Required one of:
- real-time-event
- trigger-event
- threshold-event

Event sampling strategy

data Required Object Event Sample
Object

event-based data Object
indicating an event

General Purpose Data Package

type Required String “general-

purpose”
Type of the Measurement
Channel needs to be
general-purpose

Timestamp Required String date-time Measurement date time
data Required Any time Datatype depends on

Measurement Channel
Table 4. Data Package definition.

Property Occurrence Type Format Description

Timestamp Required String date-time Timestamp of the event
value Required String e.g. “Ignition On”, “Wipers

Off”
datapackages Optional Array of data-

package

Table 5. Event Sample Object

2.5. Measurement Channel Catalogue
The complete list of available Measurement Channels in the Cross-CPP Marketplace can be
found at https://ng8.datagora.eu/pages/management/channels

https://ng8.datagora.eu/pages/management/channels

22

Figure 7. Measurement Channel Catalogue

23

3. Cloud Storage API Specification
Data sent by Data Providers is stored in the Cloud Storage (CS) to make it available for the Cross-
CPP Marketplace functionalities such as the data discovery. When Data is received in the CS, the
MP will be notified so that it can be collected and sent to those Data Consumers subscribed for
that kind of data.

Data received in the Cloud Storage must follow the Common Industrial Data Model (CIDM).

The API url (from now on api_url) is: https://cloudstorage-api.datagora.eu/

The specification of the CS API is provided in the OpenApi specification that allows to describe
and visualize RESTful web services. An online reference of version 3 of the API can be found in:
https://cloudstorage-swagger.datagora.eu/docs/ under sections:

Figure 8. Cloud Storage API Specification.

See the complete OpenAPI specification in the Annex OpenAPI Specification of the Company
Backend REST API (yaml).

https://cloudstorage-api.datagora.eu/
https://cloudstorage-swagger.datagora.eu/docs/

24

4. SDK
In order to facilitate the integration of the Company Backends with the Cloud Storage there are
several SDK provided. The list of the languages supported can be increased by means of tools
that automatize the creation from the OpenAPI specification.

25

5. Context Monitoring and Extraction (CME)
The CME module provides 2 main customisation endpoints:

• Context models (section 5.1)
• Customisation of existing or creation of new Reasoning Rules (section 5.2)

The customisation explained here and any further customisation of the CME components, either
for adding further monitors or reasoning rules for extraction, can be made by downloading and
changing the CME module as provided in the open source code project on GitHub3 under the EPL
2.0 license or by placing a customisation request to the CME team at context-support@cross-
cpp.eu.

5.1. Context Models
The Context Models in Cross-CPP are not a software component to be implemented, but models
that describes the static and dynamic aspects of use of CPPs.

The Context Models are modelled in the form of ontologies and for this, the context modelling
software component is used to create and update the needed models.

As context models describe the situations under which signal value is measured, or a CPP is
used, they may vary from CPP to CPP. This means that in the setup phase of the Cross CPP
ecosystem, the context model(s) for the specific CPP have to be defined and implemented. The
Cross-CPP context model bundle includes one Generic Context Model, which is the basis for the
following extensions:

• CPP specific vehicle context model: a specific context model that extends the Generic
Context Model with vehicle specific measured and basic signals.

• CPP specific smart infrastructure context model: a specific context model that extends
the Generic Context Model with smart infrastructure specific measured and basic signals.

• Vehicle and building discovery extended relational context model: a context model

The chosen context modelling tool was Protégé4, a free, open-source platform that provides the
needed functionality for the Cross-CPP context modelling tool, but any tool of your choice that
provides the same functionality to create and update ontologies (*.owl files) could be used. The
following txt uses Protégé though when an ontology edit is needed.

 Basic principles for context modelling
Some basic principles for context modelling were identified, followed within Cross-CPP and
should be taken into account when further developing the provided context models:

3 Link to be added
4 https://protege.stanford.edu/products.php

mailto:context-support@cross-cpp.eu
mailto:context-support@cross-cpp.eu

26

1. Support description of main context:
In practices, we cannot model all context information, and it is also not realistic. The
context model should consider those most related factors according to the requirement
of context sensitive adoption.

2. Model the context that is easy acquirable:
Those context factors considered should be identifiable and acquirable, whether
provided through context monitoring services automatically, or by user input explicitly.

3. Trade-off between investment of context modelling/extracting and effects of context
sensitive adoption:
Intuitively, if we could model as much context factors in as much details, the accuracy
of context will be higher. However, this does not come for free. On the one hand, more
time and efforts are need on context modelling; on the other hand, more computing
resources are needed to handle the context, which will bring deficiency to the adoption
process.

For each CPP, one has to define which concepts are relevant for the description of the situations
(context), under which the CPP signals are generated and measured. Once of the concepts
relevant to the description of context of CPP data streams generation are defined, the next step
is to define the concepts which are relevant for the application (Cross-CPP module, filtering to
be applied, discovery process) where it will be used. As a first approach, and because there are
so many CPP measured signals, some general situations are considered (situations that could
be interesting for a wide range of cross-sectorial services) and that could bring the most benefit
in terms of filtering capabilities that could be offered on the extracted context basis.

The process for defining the Context Model(s) for a CPP is as follows:

o Define CPP specific Context Model (starting from the Generic context model)

o Select functionality of the application for which the context model has to be specified.
o From the existing ontologies and the CPP specific Context Model select a concept relevant

for adaptation of the functionality.
o Check whether or not exist CPP basic or measured data in the CPP Cloud Storage

o If it exists, the concept may be adopted.
o If it does not exist, check if there are sensor signals from the OEM Backends that

are still not yet configured but could be also collected.

o If this also does not exist, check if is it reasonable to introduce new CPP data
concept in the CIDM to provide sensor measured data for it.

o If the concept is selected – define the relative weighing of this concept in the extraction
of the current context.

o Repeat the process for each functionality where the extracted context is to be applied
The process is iterative, i.e. based on analysis of the ‘needs’ of each functionality and service, the
initial model can be updated, and the process repeated.

27

 Generic context model
The main entities in the generic context model are:

• CPP: comprising all CPPs that are possible
• Activity: the type of activities that can be identified
• Information:

o Basic CPP Information, comprising all CPP information that are intrinsic for the
CPP and do not change (at least not often) such as vehicle colour, sensor height,
etc.

o Sensor Measurement Data, comprising of all sensor signals that can possibly be
collected in a certain CPP

• Stakeholder, the actors that are involved in the CPP information value chain

Figure 9: Generic context model

This context model is the basis for the CPP specific context models that exist or will be modelled
when that Cross-CPP Marketplace is opened for more OEM data providers.

28

 Creating/Editing of context models
In order to edit any of the currently available CPP specific context models, you need to open the
respective ontology in Protégé (Cross-CPP_Context_Model_v042_vehicle.owl or Cross-
CPP_Context_Model_v042_building.owl) and make the necessary edit such as:

1. Add new Sensor Measurement Data
2. Add new Basic CPP Information
3. Add new Stakeholders
4. Save, close and upload in the Context Model repository of the CME module (see more

details in section 5.3).

To create a context model for a new CPP you need to:

1. create a new ontology file in Protégé
2. import the generic context model ontology (copy the genericOntology_v42.owl file to

your working folder and make a direct import in the ontology project that you have
created).

3. Follow the same steps as described above for edition of existing ontologies.

The above mentioned models are at the moment available on request (please direct your emails
to context-support@cross-cpp.eu) but they will be available in a public GitHub repository free
for download under a license to be defined.

The addition of new context models needs to be customised on the Context Monitor component.
The CME module is provided as an open source code project on GitHub5 under the EPL 2.0 license
and can be customised. Customisation can also be request via the context-support@cross-
cpp.eu.

5.2. Reasoning Rules Configuration
A part of the main adaption work to be done when customising the Context monitoring &
extraction module is the introduction of new rules and changing the existing ones. For this
purpose, the CME framework provides interfaces both within the code as well as in the form of
a freely adaptable configuration file. Both will be described within this section.

 Extraction rules configuration file
The configuration file can be found within the main folder of the CME module and is named
extraction_configuration.xml. Within this file, the following sections can be found which can be
adapted by the administrator:

- setup of the reasoning rules for the context-sensitive data discovery

5 Link to be added

mailto:context-support@cross-cpp.eu
mailto:context-support@cross-cpp.eu
mailto:context-support@cross-cpp.eu

29

- setup of the reasoning rules for the context-sensitive data access control for the data
owner (security feature)

- configuration of the reasoning rules

Setup of the reasoning rules for context-sensitive data discovery

The following

Figure 10 shows the reasoning rules that can be applied by the context-sensitive filtering of data
packages during the data discovery as they are listed on the UI of the Marketplace within the
Additional configuration tab.

Figure 10. Context-sensitive data filtering in the Cross-CPP Marketplace UI

In the configuration file, the administrator will find the following structure for building this list
of filtering options:

<rules>
 <rule id={unique_id} name={rule_name} cppType={cpp_type}
 tooltip={tooltip} />
</rules>

Each rule for the context-sensitive data filtering has the following attributes:

- unique_id: a unique identification number
- rule_name: a name indicating the meaning or scope of the rule
- cpp_type: the cpp type to which this rule should be applied in the extraction service (by

default vehicle and/or building)
- tooltip: a tooltip which gives more information about the semantic of the rule, which will

be shown also in the Marketplace UI

A rule can simply be registered by adding a new <rule> element to the <rules> section.

Hint: Pay special attention to use user-friendly names, descriptions and tooltips within your rule
configuration in order to make them easier accessible for the end users. Make sure to define
only rules for which exists a valid configuration within a <ruleConfiguration> section.

30

Setup of the reasoning rules for the context-sensitive data access control for data owners

Find in

Figure 11 a snippet of the context-sensitive data access control options for the data owner in the
Marketplace UI, which allows him to control his data access according to specific context
parameters.

Figure 11. context-sensitive data access control options in the Cross-CPP Marketplace UI

In the configuration file, these options are being defined within the <dataOwnerContextOptions>
element. Each Option consists of a set of different alternatives for this option and has the
following attributes:

- unique_name: a unique name for this option
- tooltip: a description for this option to be shown as tooltip in the Marketplace UI

Enclosed to an option are different alternatives, specified within the <alternative> element as
shown below.

<dataOwnerContextOptions>
 <option name={unique_name} tooltip={tooltip}>
 <alternative>{alternative1}</alternative>
 <alternative>{alternative2}</alternative>
 </option>
</dataOwnerContextOptions>

Hint: in order to function as desired, the choice of options and alternatives has to be aligned with
the set of context variables used by the Cross-CPP security module’s access control policy. Also
make sure to introduce only options and alternatives which correspond to a valid rule
configuration (see later in this section).

Configuration of the reasoning rules

31

Each rule specified within <rules> can be configured within a corresponding <ruleConfiguration>
element. Find the template for the configuration below

<ruleConfiguration id={unique_id} internalName={rule_name} cppType={cpp_type}>
 <signalConfiguration id={measurement_channel_id}>
 <value>{value}</value>
 </signalConfiguration>
 <signalConfiguration id={measurement_channel_id}>
 <max>{maximum_value}</max>
 <min>{minimum_value}</min>
 </signalConfiguration>
</ruleConfiguration>

The attributes for a rule configuration are:

- unique_id: a unique identifier of the rule corresponding to those specified within <rules>
element

- rule_name: the (module internal) name of the rule
- cpp_type: the CPP type this rule applies to (by default vehicle or building)

Each rule configuration is being accompanied by a set of signal configurations, indicating the
measurement channels used within the rule. For each measurement channel involved, a
<signalConfiguration> element will be introduced. The signal configuration specifies the
parameter value operators, to which the rule should be applied to. Examples are maximum
(signal < maximum), minimum (signal > minimum) and value (signal = value). Each of the value
operators can be defined within a corresponding <max>, <min> or <value> element, as can be
seen in the template above.

 Source code customisation
In order to make additional defined reasoning rules function correctly or to edit the already
existing rules, the administrator has to adapt the existing CME source code at some specific
spots, which will be shown and explained in the following section. Changes will have to be made
within the following java classes6:

- ExtractionRule: In order to make the CME recognise the rule this interface has to be
implemented

- ExtractionOptions: recently created reasoning rules have to be registered here

For each reasoning rule defined in <rules> a corresponding class implementing the
ExtractionRule has to be implemented. The abstract class ExtractionRule provides the following
methods to be extended:

- void readConfiguration(string url): method to parse the extraction_configuration.xml and
provide information about the attributes and parameters

6 Link to GitHub repository to be added here

32

- boolean applyRule(): defines the core reasoning logic, which evaluates to true if the rule
applies to the given set of data

The following class attributes are available and have to be set correctly:

- id: the unique identifier of the rule
- keyword: a name/description of the rule, which can match with the internalName

specified within the configuration file
- CPPType: the CPP type to which the rule should be applied

A template for reading the extraction configuration is available in the already existing rule
implementations and can be used for creating new rules.

In order to make CME recognise and use the newly defined rules they first have to registered in
ExtractionOptions, as seen below. Once the rules are registered here the extraction service will
use them at the next module start up.

registerRule(new RuleIsDrivingOnHighway(CONFIG_PATH));
registerRule(new RuleIsWeekday(CONFIG_PATH));
registerRule(new RuleIsWeekend(CONFIG_PATH));
registerRule(new RuleIsBusiness(CONFIG_PATH));
registerRule(new RuleIsLeisure(CONFIG_PATH));

... register here the additional rules

5.3. Updating the context model and measurement channel list
Before uploading a new context model into CME it has to be ensured that the signal names
match those provided within the Cross-CPP Marketplace, otherwise the respective signal may
not be recognized by the monitoring service. If the preconditions are met, just copy the new
context model (see section 5.1.3 on how to edit and create a context model) into folder context-
monitoring-extraction/resources and overwrite the existing one (make a backup before). The
CME service has to be restarted to recognize the changed context model.

The measurement channel list with the mapping of the measurement channel IDs to the
measurement channel names can be updated in the class MeasurementChannelIdsEnum. This
mapping is being loaded by the context monitoring service during runtime in order to recognize
the valid measurement channels to work with. Here also has to be ensured that the names of
the measurement channels match with those provided in the context model, otherwise the
respective measurement channel may not be recognized by the monitoring and extraction
service.

Further customisation is possible by developers as the CME module is provided as an open
source code project on GitHub7 under the EPL 2.0 license. Furthermore, customisation can also
be request via context-support@cross-cpp.eu.

7 Link to be added

mailto:context-support@cross-cpp.eu

33

F.A.Q.
Cross-CPP data-marketplace
Q: What is Cross-CPP data-marketplace?

A: Cross-CPP data-marketplace connects Data Providers and Data Consumers for selling and
acquiring Connected Vehicle and Home Building data under the Common Industrial Data model
(CIDM). It offers a secure and privacy preserving experience when selling or buying sharing big
data, by having the full control over your data shared, to whom and for what purposes.

Cross-CPP offers to cross-sectorial Data Consumers, the possibility to search for more than 200
sensor signals, display advance visualization representations (such as Histograms, Geo-
Histograms or Time Series) and retrieve those datasets in a seamless experience thanks to the
open SDK-API created.

Q: How do I, as data provider, register into Cross-CPP data-marketplace?

A: You can find the registration form by clicking the “Sign on!” button in the landing page. Select
“Original Equipment Manufacturer” role and fill the fields to request your registration. Once your
registration is validated by a system administrator an email will be sent to you to confirm your
access,

Q: What do I have to do in order to start working with CROSS-CPP data-marketplace?

A: Once registered you must be familiar with the CIDM, as it is the format in which you will receive
the data you request.

Cross-CPP data model
Q: What is the Common Industrial Data Model (CIDM)?

A: The CIDM is a standardized data model for industrial data-driven services.

Q: Which are the benefits and advantages of using the CIDM model for data -driven services:

A: -The CIDM constitute a major business and technical advantage for Data Consumers:

• The CIDM provides a brand-independent and transparent data model, which harmonizes
proprietary data into generic datasets independently of any cross-sectorial Industry

• It is built on an open and highly scalable automotive big data format (JSON Schema).
• Active community of service providers increasing the number of signals available from

vehicles and Smart Buildings to be recorded as well as the type of measurement
channels can be modified or extended

• The Data Provider also provides an origin certification as a CIDM feature to support the
validation and verification of origin, integrity and completeness of data. The intention is
to protect the data inside the Data Package against manipulation.

Q: What is a signal?

34

A: A signal is the information provider of each CPP. They are the perception organs of CPPs and
it is their main duty to detect physical phenomenon and chemical quantities. They observe the
environment and generate data in the CIDM format. An example could be “speed” or “latitude”

Q: What is a channel?

A: A channel is the way the physical signals and their sampled measurements are implemented
and represented in the CIDM format. Some examples could be “Vehicle Speed” using the signal
“Speed” in a time-series or in a histogram format, or “Position” using both “Latitude” and
“Longitude” signals.

Q: Can I request a new signal or channel?

A: Cross-CPP data-marketplace offers a wide variety of signals provided by the manufacturers.
The catalogue is really extensive and can be filtered in many ways. If even then you can’t find
the signal that you need and/or think can be provided by any of our data providers, please
contact us in: cross-cpp-support@lists.atosresearch.eu.

Cross-CPP marketplace components
Q: What is the Context Monitoring and Extraction module and how can it help me?

A: The Context Monitoring and Extraction module allows Cross-CPP to suggest signals to add to
your current Data Discovery filters, based on the context model of the signals already selected.
This might help you find data of interest that you would miss otherwise.

Q: Can I add a new context sensitive filter to the discovery process?

A: This is possible by following the steps described in section 5 as the CME module is provided
as an open source code project on GitHub8 under the EPL 2.0 license. Furthermore,
customisation can also be request via context-support@cross-cpp.eu.

Q: Can I get more information on how the context is being calculated?

A: In the context sensitive filter within the discovery process each context option is accompanied
by a tooltip in the UI. Hovering over it will show the logic behind each context filtering option.

8 Link to be added

mailto:cross-cpp-support@lists.atosresearch.eu
mailto:context-support@cross-cpp.eu

35

Glossary

Administrator: Cross-CPP marketplace system administrator

AEON: AEON application

AEON application: publication/subscription based communication application

AEON channel: set configuration for communication between two actors through AEON
application

CB: Company Backend

CIDM: Common Industrial Data Model

CIDM model: standardized data model for industrial data-driven services

Cloud Storage: Storage system deployed by Cross-CPP solution to store CPP owners data coming
from Data Providers

CME: Context Monitoring and Extraction

Company Backend: Data Provider backend system to connect to the Cloud Storage

CPP: cyber-physical product

CPP Data: data created by a CPP and sent to the system by the Data Provider

CPP Owner: Data Owner which CPP is registered in the Cross-CPP data-marketplace

Cross-CPP: System

CS: Cloud Storage

Data Consumer: actor who receives the data created by owners to use it on the creation or
improvement of services

Data Owner: owner of the CPP that sends data to the system

Data Provider: OEM that provides its users data to the Cross-CPP marketplace

Data Request: set of configurations that define a scope for CPP Data to be received by a Data
Consumer

Id: generic document id string (example: 5cd96b65ff89151c002d16b3)

Marketplace: Marketplace Web Application

Measurement Channel: sampler of the data the signals process

MP: Marketplace

OEM: Original Equipment Manufacturer

36

Provider: Data Provider

Service Provider: Data Consumer

Signal: information provider of the data the CPP sensors generate

System: the whole lot of applications that conforms CROSS-CPP, including Marketplace Web
Application and Marketplace Server.

UUID: universally unique identifier. Standardized 16 bytes Id signature formed by 32 hexadecimal
digits (example: 90eb04b2-a07c-4835-8618-9c0140f8391a)

37

Figures
Figure 1. Sending Data process .. 4

Figure 2. Cloud Storage Permissions View. .. 5

Figure 3: Layered High-level View of the Common Industrial Data Model (CIDM) 11

Figure 4. Signal UML Model. ... 12

Figure 5. Measurement Channel UML Model. .. 14

Figure 6. Data Package UML Model. ... 17

Figure 7. Measurement Channel Catalogue ... 22

Figure 8. Cloud Storage API Specification. .. 23

Figure 9: Generic context model .. 27

Figure 10. Context-sensitive data filtering in the Cross-CPP Marketplace UI .. 29

Figure 11. context-sensitive data access control options in the Cross-CPP Marketplace UI 30

Tables
Table 1. Push Data Package request ... 7

Table 2. Signal property definition. ... 13

Table 3: Measurement channel definition .. 16

Table 4. Data Package definition. .. 21

Table 5. Event Sample Object ... 21

Listings
Listing 1. Time-series type data package .. 8

Listing 2. Histogram type data package ... 8

Listing 3. Geo-histogram type data package ... 9

Listing 4. Event-based type data package ... 9

Listing 5. General purpose type data package ... 9

Listing 6. Basic CPP information type data package .. 10

38

Annex

OpenAPI Specification of the Company Backend REST API (yaml)

swagger: "2.0"
info:
 version: 3.0.0
 title: Cloud Storage Provider API Definition
 contact:
 name: Elisa Herrmann
 url: http://www.cross-cpp.eu
 email: elisa.herrmann@atos.net
host: cloudstorage-api.datagora.eu
basePath: /
schemes:
- https
consumes:
- application/json
produces:
- application/json
security:
- api_key: []
paths:
 /users:
 get:
 tags:
 - User Management
 summary: Retrieve all users
 description: This functionalities provides a list of all users within this Cloud Storage
Provider. This API call is not specified and may only be used by the Cloud Storage Provider for
internal user management. Returns an array of `User` objects.
 operationId: usersGET
 parameters: []
 responses:
 "200":
 description: OK
 schema:
 type: array
 items:
 $ref: '#/definitions/FullUser'
 "401":
 description: Unauthorized
 "403":

39

 description: Forbidden
 "404":
 description: Not found
 default:
 description: Unexpected error
 x-swagger-router-controller: Default
 post:
 tags:
 - User Management
 summary: Create new user
 description: API call registers a new user and creates new Cloud Storage Vault at the
Provider. This API call is not specified and is intended to be used for internal user management.
 operationId: usersPOST
 parameters:
 - in: body
 name: User
 description: Defines full name, login and password of the user.
 required: true
 schema:
 $ref: '#/definitions/User'
 responses:
 "200":
 description: OK
 schema:
 $ref: '#/definitions/FullUser'
 "400":
 description: Bad request
 "401":
 description: Unauthorized
 "403":
 description: Forbidden
 "409":
 description: Conflict - User already exists
 default:
 description: Unexpected error
 x-swagger-router-controller: Default
 /users/access:
 post:
 tags:
 - Contract Management
 summary: Grant access permission
 description: Acquires access permissions to the `api_key` that is used in this request. If
`key`is a `vault-write-key` `write permission`is granted, if `key`is `vault-read-key` `read
permission`is granted.
 operationId: usersAccessPOST
 parameters:

40

 - in: body
 name: key
 description: (Read or write) Access key to one Cloud Storage Vault.
 required: true
 schema:
 $ref: '#/definitions/key'
 responses:
 "200":
 description: OK
 schema:
 $ref: '#/definitions/inline_response_200'
 "400":
 description: Bad request
 "401":
 description: Unauthorized
 "403":
 description: Forbidden
 "404":
 description: Not found
 default:
 description: Unexpected error
 x-swagger-router-controller: Default
 /users/access/{key}:
 get:
 tags:
 - Contract Management
 summary: Validate access token
 description: tbd
 operationId: usersAccessGET
 parameters:
 - name: key
 in: path
 description: Access key for Cloud Storage Vault
 required: true
 type: string
 format: uuid
 responses:
 "200":
 description: OK
 schema:
 $ref: '#/definitions/inline_response_200_1'
 x-swagger-router-controller: Default
 delete:
 tags:
 - Contract Management
 summary: Release access permissions

41

 description: Releases access permissions of the `api_key` that is used in this request. If
`key`is a `vault-write-key` `write permission`is released, if `key`is `vault-read-key` `read
permission`is released.
 operationId: usersAccessKeyDELETE
 parameters:
 - name: key
 in: path
 description: Access key for Cloud Storage Vault
 required: true
 type: string
 format: uuid
 responses:
 "200":
 description: OK
 "400":
 description: Bad request
 "401":
 description: Unauthorized
 "403":
 description: Forbidden
 "404":
 description: Not found
 default:
 description: Unexpected error
 x-swagger-router-controller: Default
 /datapackages:
 post:
 tags:
 - Data Storage Interface
 summary: Push data packages into Cloud Storage
 description: This API call enables OEMs to write data packages into the cloud. Data
packages are stored within a CIDM container structure. Every data package needs to contain
the correct vault-id. The OEM needs write permission to the user's Cloud Storage Vault. The
Cloud Storage Provider assignes an unique datapackage-id to every delivered data package.
 operationId: datapackagesPOST
 parameters:
 - in: body
 name: Data Package Container
 description: CIDM container structure containing valid and json encoded CIDM data
packages
 required: true
 schema:
 type: array
 items:
 $ref: '#/definitions/DataPackage'
 responses:

42

 "200":
 description: OK
 "400":
 description: Bad request
 "401":
 description: Unauthorized
 "403":
 description: Forbidden
 default:
 description: Unexpected error
 x-swagger-router-controller: Default
 /datapackages/{datapackageid}:
 get:
 tags:
 - Data Provisioning Interface
 summary: Get data package
 description: Retrieve one data package with `datapackage-id`.
 operationId: datapackagesIdGET
 parameters:
 - name: datapackageid
 in: path
 description: Unique data package identifier
 required: true
 type: string
 - name: metadata
 in: query
 description: Retrieve *only* metadata, default=false
 required: false
 type: boolean
 default: false
 responses:
 "200":
 description: OK
 schema:
 $ref: '#/definitions/DataPackage'
 "400":
 description: Bad request
 "401":
 description: Unauthorized
 "403":
 description: Forbidden
 "404":
 description: Not found
 default:
 description: Unexpected error
 x-swagger-router-controller: Default

43

 /datapackages/query:
 post:
 tags:
 - Data Provisioning Interface
 summary: Query data packages
 description: Allows searching for data packages. Cloud Storage Provider will only include
Cloud Storage Vaults into search where `api_key` has read access.
 operationId: datapackagesQueryPOST
 parameters:
 - in: body
 name: query
 description: Query for data packages
 required: true
 schema:
 $ref: '#/definitions/Query'
 responses:
 "200":
 description: OK
 schema:
 type: array
 items:
 $ref: '#/definitions/DataPackage'
 "400":
 description: Bad request
 "401":
 description: Unauthorized
 "403":
 description: Forbidden
 "404":
 description: Not found
 default:
 description: Unexpected error
 x-swagger-router-controller: Default
 /datapackages/query_stream:
 post:
 tags:
 - Data Provisioning Interface
 summary: Query data packages
 description: Allows searching for data packages. Cloud Storage Provider will only include
Cloud Storage Vaults into search where `api_key` has read access.
 operationId: datapackagesQueryStreamPOST
 parameters:
 - in: body
 name: query
 description: Query for data packages
 required: true

44

 schema:
 $ref: '#/definitions/Query'
 responses:
 "200":
 description: OK
 schema:
 type: array
 items:
 $ref: '#/definitions/DataPackage'
 "400":
 description: Bad request
 "401":
 description: Unauthorized
 "403":
 description: Forbidden
 "404":
 description: Not found
 default:
 description: Unexpected error
 x-swagger-router-controller: Default
 /datapackages/basicCppQuery:
 post:
 tags:
 - Data Provisioning Interface
 summary: Query basic CPP information data packages
 description: Allows searching for data packages. Cloud Storage Provider will only include
Cloud Storage Vaults into search where `api_key` has read access.
 operationId: basicCppQueryPOST
 parameters:
 - in: body
 name: query
 description: Query for data packages
 required: true
 schema:
 $ref: '#/definitions/Query'
 responses:
 "200":
 description: OK
 schema:
 type: array
 items:
 $ref: '#/definitions/DataPackage'
 "400":
 description: Bad request
 "401":
 description: Unauthorized

45

 "403":
 description: Forbidden
 "404":
 description: Not found
 default:
 description: Unexpected error
 x-swagger-router-controller: Default
 /datapackages/basicCppQuery_stream:
 post:
 tags:
 - Data Provisioning Interface
 summary: Query basic CPP information data packages
 description: Allows searching for data packages. Cloud Storage Provider will only include
Cloud Storage Vaults into search where `api_key` has read access.
 operationId: basicCppQueryStreamPOST
 parameters:
 - in: body
 name: query
 description: Query for data packages
 required: true
 schema:
 $ref: '#/definitions/Query'
 responses:
 "200":
 description: OK
 schema:
 type: array
 items:
 $ref: '#/definitions/DataPackage'
 "400":
 description: Bad request
 "401":
 description: Unauthorized
 "403":
 description: Forbidden
 "404":
 description: Not found
 default:
 description: Unexpected error
 x-swagger-router-controller: Default
 /notifications:
 post:
 tags:
 - Notifications
 summary: Subscribe Push Notification

46

 description: Functionality of the marketplace to subscribe to push notification events. Push
notifications are sent, whenever users put data into their Cloud Storage Vaults.
 operationId: notificationsPOST
 parameters:
 - in: body
 name: config
 description: Push Notification URL
 required: true
 schema:
 $ref: '#/definitions/config'
 responses:
 "200":
 description: OK
 "400":
 description: Bad request
 "401":
 description: Unauthorized
 "403":
 description: Forbidden
 default:
 description: Unexpected error
 x-swagger-router-controller: Default
 delete:
 tags:
 - Notifications
 summary: Unsubscribe Push Notification
 description: No more push notifications will be sent from the Cloud Storage Provider to
the marketplace.
 operationId: notificationsDELETE
 parameters: []
 responses:
 "200":
 description: OK
 "401":
 description: Unauthorized
 "403":
 description: Forbidden
 "404":
 description: Not found
 default:
 description: Unexpected error
 x-swagger-router-controller: Default
 /access:
 get:
 tags:
 - Contract Management

47

 summary: Validate authentication token
 description: t.b.d.
 operationId: accessGET
 parameters: []
 responses:
 "200":
 description: OK
 schema:
 $ref: '#/definitions/inline_response_200_2'
 "403":
 description: Forbidden / No authorization token in header
 "404":
 description: Authorization token not found!
 "500":
 description: Internal Error
 x-swagger-router-controller: Default
securityDefinitions:
 api_key:
 description: Provides authentification for OEM and Marketplace. Must be sent in HTTP
header.
 type: apiKey
 name: Authentication
 in: header
definitions:
 FullUser:
 allOf:
 - $ref: '#/definitions/User'
 - {}
 User:
 type: object
 required:
 - full-name
 - login-name
 - password
 properties:
 full-name:
 type: string
 description: Full name of the user
 login-name:
 type: string
 format: email
 description: Login name of the user (e-mail)
 password:
 type: string
 description: Password of the user
 example:

48

 password: password
 full-name: full-name
 login-name: login-name
 DataPackage:
 type: object
 required:
 - cpp-type
 - cvim-version
 - data
 - measurement-channel-id
 - type
 - vault-id
 properties:
 vault-id:
 type: string
 description: Cloud Storage Vault ID, where the data packages are pushed into.
 datapackage-id:
 type: string
 description: Unique identifier of the data package. Property is set by Cloud Storage
Provider.
 readOnly: true
 data:
 type: object
 description: CIDM data
 properties: {}
 cvim-version:
 type: string
 description: Version of the CIDM protocol >=1.1.2
 type:
 type: string
 description: Type of the Data Package
 cpp-type:
 type: string
 description: Type of the CPP device, "vehicle" or "builging"
 cpp-id:
 type: string
 description: CPP ID for identifying vehicles or bulding of the same owner and vault-id
 measurement-channel-id:
 type: string
 description: Identifier of the Measurement Channel whose data is inside this data package
 timestamp:
 type: string
 description: Measurement timestamp (basic-cpp-information and event-based)
 timestamp-start:
 type: string
 description: Measurement start time

49

 timestamp-stop:
 type: string
 description: Measurement stop time
 mileage-start:
 type: number
 description: Mileage at the start of measurement in kilometres (km)
 mileage-stop:
 type: number
 description: Mileage at the end of measurement in kilometres (km)
 geo-bounding-box:
 type: object
 description: geographic bounding box (see reference manual section 6.5.1.1)
 properties: {}
 room-id:
 type: string
 description: Identifier of the room in a building cpp-type
 oem-certification:
 type: object
 description: OEM certification (see reference manual section 6.5.1.2)
 properties: {}
 ownership-information:
 type: object
 description: Data Ownership Information (see reference manual section 6.5.1.3)
 properties: {}
 expiration-date:
 type: string
 description: Data expiration date
 data-masking-active:
 type: boolean
 description: Indicates status of data-masking (true = active)
 example:
 datapackage-id: datapackage-id
 vault-id: vault-id
 data: '{}'
 data-masking-active: true
 cvim-version: cvim-version
 type: type
 mileage-stop: 6.027456183070403
 measurement-channel-id: measurement-channel-id
 timestamp-start: timestamp-start
 geo-bounding-box: '{}'
 mileage-start: 0.8008281904610115
 oem-certification: '{}'
 ownership-information: '{}'
 timestamp-stop: timestamp-stop
 expiration-date: expiration-date

50

 Query:
 type: object
 properties:
 datapackage-id:
 type: array
 description: Array of Data Package IDs
 items:
 type: string
 description: Data Package ID
 measurement-channel-id:
 type: array
 description: Array of Measurement Channel IDs
 items:
 type: string
 description: Measurement Channel ID
 vault-id:
 type: array
 description: Array of Cloud Storage Vault IDs
 items:
 type: string
 submit-time:
 $ref: '#/definitions/Query_submittime'
 metadata:
 type: boolean
 description: Request only metadata, default=off
 default: false
 example:
 datapackage-id:
 - datapackage-id
 - datapackage-id
 submit-time:
 min: 2000-01-23T04:56:07.000+00:00
 max: 2000-01-23T04:56:07.000+00:00
 metadata: false
 vault-id:
 - vault-id
 - vault-id
 measurement-channel-id:
 - measurement-channel-id
 - measurement-channel-id
 key:
 type: object
 properties:
 vault-access-key:
 type: string
 format: uuid

51

 description: Access key for Cloud Storage Vault
 config:
 type: object
 properties:
 handler-url:
 type: string
 format: uuid
 description: URL for push notifications
 level:
 type: string
 description: Defines the level of the notification ('id-only', 'metadata' or 'full')
 Query_submittime:
 properties:
 min:
 type: string
 format: date-time
 description: Earliest Data Package submission time
 max:
 type: string
 format: date-time
 description: Latest Data Package submission time
 description: Data Package submission time
 example:
 min: 2000-01-23T04:56:07.000+00:00
 max: 2000-01-23T04:56:07.000+00:00
 inline_response_200:
 type: object
 properties:
 full-name:
 type: string
 vault-id:
 type: string
 description: ID of the user's Cloud Storage Vault.
 inline_response_200_1:
 type: object
 properties:
 full-name:
 type: string
 vault-id:
 type: string
 format: uuid
 description: ID of the user's Cloud Storage Vault.
 type:
 type: string
 description: '`read` or `write` access key'
 in-use:

52

 type: boolean
 description: '`true` when key is already in use, otherwise `false`'
 inline_response_200_2:
 type: object
 properties:
 name:
 type: string
 type:
 type: string

CIDM v1.2.1 jsonSchema
{

 "$schema": "http://json-schema.org/draft-04/schema#",

 "description": "Common Industrial Data Model",

 "type": "object",

 "properties": {

 "Signal": {

 "$ref": "#/definitions/Signal"

 },

 "MeasurementChannel": {

 "$ref": "#/definitions/MeasurementChannel"

 },

 "DataPackage": {

 "$ref": "#/definitions/DataPackage"

 }

 },

 "additionalProperties": false,

 "definitions": {

 "TimeSeriesMeasurementChannel": {

 "title": "TimeSeriesChannel",

 "type": "object",

 "properties": {

 "type": {

 "type": "string",

 "enum": [

 "time-series"

]

 },

 "capture-interval": {

 "type": "number"

 },

 "on-change": {

 "type": "boolean"

 },

 "sample-strategy": {

 "type": "string",

 "enum": [

 "min",

 "max",

 "average",

 "last-known-value"

]

 },

53

 "signal": {

 "$ref": "#/definitions/Signal"

 },

 "format": {

 "type": "string"

 },

 "dimension": {

 "type": "number"

 }

 },

 "required": [

 "type",

 "capture-interval",

 "on-change",

 "sample-strategy",

 "signal"

]

 },

 "MeasurementChannel": {

 "type": "object",

 "properties": {

 "id": {

 "type": "string"

 },

 "name": {

 "type": "string"

 },

 "type": {

 "type": "string",

 "enum": [

 "time-series",

 "histogram",

 "geo-histogram",

 "general-purpose",

 "event-based",

 "basic-cpp-information"

]

 },

 "comment": {

 "type": "string"

 }

 },

 "required": [

 "id",

 "name",

 "type"

],

 "oneOf": [

 {

 "$ref": "#/definitions/TimeSeriesMeasurementChannel"

 },

 {

 "$ref": "#/definitions/HistogramMeasurementChannel"

 },

 {

 "$ref": "#/definitions/GeoBasedHistogramMeasurementChannel"

 },

54

 {

 "$ref": "#/definitions/GeneralPurposeMeasurementChannel"

 },

 {

 "$ref": "#/definitions/BasicCppInformationMeasurementChannel"

 },

 {

 "$ref": "#/definitions/EventBasedMeasurementChannel"

 }

]

 },

 "HistogramMeasurementChannel": {

 "type": "object",

 "properties": {

 "type": {

 "type": "string",

 "enum": [

 "histogram",

 "geo-histogram"

]

 },

 "aggregation-strategy": {

 "type": "string",

 "enum": [

 "time",

 "count",

 "min",

 "max"

]

 },

 "capture-interval": {

 "type": "number"

 },

 "dimensions": {

 "type": "integer",

 "minimum": 1

 },

 "bins": {

 "type": "array",

 "minItems": 1,

 "items": {

 "type": "object",

 "properties": {

 "type": {

 "type": "string",

 "enum": [

 "linear",

 "logarithmic",

 "custom"

]

 },

 "lower-bound": {

 "type": "number"

 },

 "upper-bound": {

 "type": "number"

 },

55

 "signal": {

 "$ref": "#/definitions/Signal"

 },

 "number-of-bins": {

 "type": "integer",

 "minimum": 0

 },

 "alternative-bin-labels": {

 "type": "array",

 "items": {

 "type": "string"

 }

 }

 },

 "required": [

 "type",

 "lower-bound",

 "upper-bound",

 "signal",

 "number-of-bins"

],

 "oneOf": [

 {

 "type": "object",

 "properties": {

 "type": {

 "type": "string",

 "enum": [

 "linear",

 "logarithmic"

]

 }

 },

 "required": [

 "type"

]

 },

 {

 "type": "object",

 "properties": {

 "type": {

 "type": "string",

 "enum": [

 "custom"

]

 },

 "custom-bounds": {

 "type": "array",

 "items": {

 "type": "number"

 }

 }

 },

 "required": [

 "type",

 "custom-bounds"

]

56

 }

]

 }

 }

 },

 "required": [

 "type",

 "aggregation-strategy",

 "capture-interval",

 "dimensions",

 "bins"

],

 "additionalProperties": false

 },

 "GeoBasedHistogramMeasurementChannel": {

 "type": "object",

 "properties": {

 "type": {

 "type": "string",

 "enum": [

 "geo-histogram"

]

 },

 "geo-resolution": {

 "type": "number"

 }

 },

 "required": [

 "type",

 "geo-resolution"

],

 "additionalProperties": false,

 "allOf": [

 {

 "$ref": "#/definitions/HistogramMeasurementChannel"

 }

]

 },

 "GeneralPurposeMeasurementChannel": {

 "type": "object",

 "properties": {

 "type": {

 "type": "string",

 "enum": [

 "general-purpose"

]

 },

 "signal": {

 "$ref": "#/definitions/Signal"

 }

 },

 "required": [

 "type",

 "signal"

],

 "additionalProperties": false

 },

57

 "BasicCppInformationMeasurementChannel": {

 "type": "object",

 "properties": {

 "type": {

 "type": "string",

 "enum": [

 "basic-cpp-information"

]

 },

 "signal": {

 "$ref": "#/definitions/Signal"

 }

 },

 "required": [

 "type",

 "signal"

],

 "additionalProperties": false

 },

 "EventBasedMeasurementChannel": {

 "type": "object",

 "properties": {

 "type": {

 "type": "string",

 "enum": [

 "event-based"

]

 },

 "format": {

 "type": "string"

 },

 "event-sample-strategy": {

 "type": "string",

 "enum": [

 "real-time-event",

 "trigger-event",

 "threshold-event"

]

 },

 "comment": {

 "type": "string"

 }

 },

 "required": [

 "type",

 "signal",

 "event-sample-strategy"

],

 "additionalProperties": false

 },

 "DataPackage": {

 "type": "object",

 "properties": {

 "datapackage-id": {

 "type": "string"

 },

 "vault-id": {

58

 "type": "string"

 },

 "trip-id": {

 "type": "string"

 },

 "cpp-id": {

 "type": "string"

 },

 "cvim-version": {

 "type": "string",

 "enum": [

 "1.0.0",

 "1.0.1",

 "1.2.0",

 "1.2.1"

]

 },

 "cpp-type": {

 "type": "string",

 "enum": [

 "vehicle",

 "building"

]

 },

 "type": {

 "type": "string",

 "enum": [

 "time-series",

 "histogram",

 "geo-histogram",

 "general-purpose",

 "event-based",

 "basic-cpp-information"

]

 },

 "measurement-channel-id": {

 "type": "string"

 },

 "submit-time": {

 "type": "string",

 "format": "date-time"

 },

 "mileage-start": {

 "type": "number"

 },

 "room-id": {

 "type": "string"

 },

 "mileage-stop": {

 "type": "number"

 },

 "geo-bounding-box": {

 "type": "object",

 "properties": {

 "latitude-min": {

 "type": "number"

 },

59

 "latitude-max": {

 "type": "number"

 },

 "longitude-min": {

 "type": "number"

 },

 "longitude-max": {

 "type": "number"

 },

 "altitude-min": {

 "type": "number"

 },

 "altitude-max": {

 "type": "number"

 }

 },

 "additionalProperties": false

 },

 "location": {

 "type": "object",

 "properties": {

 "latitude": {

 "type": "number"

 },

 "longitude": {

 "type": "number"

 }

 },

 "additionalProperties": false

 },

 "oem-certification": {

 "type": "object",

 "properties": {

 "signature": {},

 "checksum": {},

 "sequence-number": {}

 },

 "additionalProperties": false

 },

 "expiration-date": {

 "type": "string",

 "format": "date-time"

 },

 "data-ownership-information": {

 "type": "object",

 "properties": {

 "privacy-veto-rights": {

 "type": "object",

 "properties": {

 "consent-level": {

 "type": "string",

 "enum": [

 "public",

 "shared",

 "private"

]

 },

60

 "data-format": {

 "type": "string",

 "enum": [

 "time-series",

 "histogram"

]

 },

 "jurisdiction": {

 "type": "string",

 "enum": [

 "Europe",

 "any"

]

 },

 "storage-constraint": {

 "type": "string",

 "enum": [

 "OEM storage",

 "Personal storage"

]

 }

 },

 "required": [

 "consent-level"

]

 },

 "copyright-stakeholders": {

 "type": "array",

 "items": [

 {

 "type": "object",

 "properties": {

 "name": {

 "type": "string"

 },

 "status": {

 "type": "string"

 }

 },

 "required": [

 "name",

 "status"

],

 "additionalProperties": false

 }

]

 },

 "data-stakeholders": {

 "type": "array",

 "items": [

 {

 "type": "object",

 "properties": {

 "name": {

 "type": "string"

 },

 "status": {

61

 "type": "string"

 }

 },

 "required": [

 "name",

 "status"

],

 "additionalProperties": false

 }

]

 },

 "data-privacy-level": {

 "type": "string",

 "enum": [

 "public",

 "shared",

 "private"

]

 }

 },

 "additionalProperties": false

 },

 "data-masking-active": {

 "type": "boolean"

 },

 "signatures": {

 "type": "array",

 "items": [

 {

 "type": "object",

 "properties": {

 "signatory": {

 "type": "string"

 },

 "checksum": {

 "type": "string"

 },

 "signature": {

 "type": "string"

 }

 },

 "required": [

 "signatory",

 "checksum",

 "signature"

],

 "additionalProperties": false

 }

]

 }

 },

 "required": [

 "cvim-version",

 "type",

 "measurement-channel-id",

 "vault-id",

 "cpp-type"

62

],

 "oneOf": [

 {

 "type": "object",

 "properties": {

 "type": {

 "type": "string",

 "enum": [

 "time-series"

]

 },

 "number-of-samples": {

 "type": "integer",

 "minimum": 1

 },

 "statistic-properties": {

 "type": "object",

 "properties": {

 "min": {

 "type": "number"

 },

 "max": {

 "type": "number"

 },

 "average": {

 "type": "number"

 },

 "histogram": {

 "type": "object",

 "properties": {

 "measurement-channel-id": {

 "type": "string"

 },

 "data": {

 "type": "array",

 "minItems": 0,

 "maxItems": 10,

 "items": {

 "type": "number"

 }

 }

 },

 "required": [

 "measurement-channel-id",

 "data"

]

 }

 }

 },

 "data": {

 "type": "array",

 "minItems": 1,

 "items": {

 "type": "object",

 "properties": {

 "timestamp": {

 "type": "string",

63

 "format": "date-time"

 },

 "value": {

 "type": [

 "array",

 "string",

 "number",

 "boolean"

],

 "items": {

 "type": [

 "string",

 "number",

 "boolean"

],

 "minLength": 1

 }

 }

 }

 }

 },

 "timestamp-start": {

 "type": "string",

 "format": "date-time"

 },

 "timestamp-stop": {

 "type": "string",

 "format": "date-time"

 }

 },

 "required": [

 "type",

 "number-of-samples",

 "data",

 "timestamp-start",

 "timestamp-stop"

]

 },

 {

 "type": "object",

 "properties": {

 "type": {

 "type": "string",

 "enum": [

 "histogram",

 "geo-histogram"

]

 },

 "data": {

 "type": "array",

 "items": {

 "type": [

 "number",

 "array"

],

 "minItems": 1,

 "items": {

64

 "type": "number"

 }

 }

 },

 "timestamp-start": {

 "type": "string",

 "format": "date-time"

 },

 "timestamp-stop": {

 "type": "string",

 "format": "date-time"

 }

 },

 "required": [

 "type",

 "data",

 "timestamp-start",

 "timestamp-stop"

]

 },

 {

 "type": "object",

 "properties": {

 "type": {

 "type": "string",

 "enum": [

 "general-purpose",

 "basic-cpp-information"

]

 },

 "data": {},

 "timestamp": {

 "type": "string",

 "format": "date-time"

 }

 },

 "required": [

 "type",

 "data",

 "timestamp"

]

 },

 {

 "type": "object",

 "properties": {

 "type": {

 "type": "string",

 "enum": [

 "event-based"

]

 },

 "data": {

 "type": "object",

 "properties": {

 "event-type": {

 "type": "string",

 "enum": [

65

 "real-time-event",

 "trigger-event",

 "threshold-event"

]

 },

 "event-data": {

 "type": "object",

 "properties": {

 "value": {

 "type": "string"

 },

 "event-datapackages": {

 "type": "array",

 "minItems": 1,

 "items": {

 "$ref": "#/definitions/DataPackage"

 }

 }

 },

 "required": [

 "value"

]

 }

 },

 "required": [

 "event-type",

 "event-data"

]

 },

 "timestamp": {

 "type": "string",

 "format": "date-time"

 }

 },

 "required": [

 "type",

 "data",

 "timestamp"

]

 }

]

 },

 "Signal": {

 "title": "CIDM Signal",

 "description": "Signals are the perception organs of vehicles. It is their ma

in duty to detect physical phenomenons and chemical quantities by transferring them into

electrical signals. They observe the environment and gener-

ate the data that is exchangeable at AutoMat’s marketplace. They are one of the core comp

onents of the AutoMat project. Figure 11 shows the UML modelling of the signals. Within A

utoMat all information pro-

viders are modelled as Signal. They can be classified as static signals or changing/non-

static signals, having a sample rate larger than zero. ",

 "type": "object",

 "properties": {

 "id": {

 "type": "string"

 },

66

 "name": {

 "type": "string"

 },

 "cpp-type": {

 "type": "string",

 "enum": [

 "vehicle",

 "building"

]

 },

 "type": {

 "type": "string",

 "enum": [

 "numeric",

 "information",

 "enumeration",

 "general-purpose"

]

 },

 "format": {

 "type": "string"

 },

 "sample-rate": {

 "type": "number",

 "minimum": 0

 },

 "comment": {

 "type": "string"

 }

 },

 "required": [

 "id",

 "name",

 "type",

 "sample-rate",

 "cpp-type"

],

 "oneOf": [

 {

 "$ref": "#/definitions/NumericSignal"

 },

 {

 "$ref": "#/definitions/EnumerationSignal"

 },

 {

 "$ref": "#/definitions/InformationSignal"

 },

 {

 "$ref": "#/definitions/GeneralPurposeSignal"

 }

]

 },

 "GeneralPurposeSignal": {

 "type": "object",

 "properties": {

 "type": {

 "type": "string",

67

 "enum": [

 "general-purpose"

]

 }

 },

 "required": [

 "type"

]

 },

 "InformationSignal": {

 "type": "object",

 "properties": {

 "type": {

 "type": "string",

 "enum": [

 "information"

]

 },

 "format": {

 "type": "string"

 }

 },

 "required": [

 "type",

 "format"

]

 },

 "EnumerationSignal": {

 "type": "object",

 "properties": {

 "type": {

 "type": "string",

 "enum": [

 "enumeration"

]

 },

 "items": {

 "type": "array",

 "items": {

 "type": "string"

 }

 }

 },

 "required": [

 "type",

 "items"

]

 },

 "NumericSignal": {

 "type": "object",

 "properties": {

 "type": {

 "type": "string",

 "enum": [

 "numeric"

]

 },

68

 "format": {

 "type": "string",

 "enum": [

 "int",

 "uint",

 "float",

 "double"

]

 },

 "min": {

 "type": "number"

 },

 "max": {

 "type": "number"

 },

 "resolution": {

 "type": "number"

 },

 "unit": {

 "type": "string"

 }

 },

 "required": [

 "type",

 "format",

 "min",

 "max",

 "resolution",

 "unit"

]

 }

 }

}

 https://cross-cpp.eu twitter.com/crosscpp linkedin.com/groups/8827695

About Cross-CPP
The objective is to establish an IT environment for the integration and analytics of
data streams coming from high volume (mass) products with cyber physical
features, as well from Open Data Sources, aiming to offer new cross sectorial
services and focusing on the commercial confidentiality, privacy and IPR and
ethical issues using a context sensitive approach. The project addresses cross-
stream analysis of large data volumes from mass cyber physical products (CPP)
from various industrial sectors such as automotive, and home automation. The
business objective of the research is to allow for analyses of such data streams in
combination to other (non-industrial, open) data streams and for the
establishment of diverse enhanced sectorial and cross-sectorial services. The
project will develop: (i) New models for integration and analytics of data streams
coming from multi-sectorial CPP, including shared systems of entity identifiers
applicable to multi-sectorial CPP (as well as the definition of agreed data models
for data streams from multiple CPP aiming at defacto standard; (ii) Ecosystem,
including a common Marketplace, and methodology to use such models to build
multi-sectorial cloud based services, (iii) Toolbox for real-time and predictive
cross-stream analytics, context modelling and extraction, and dynamically
changing security policy, privacy and IPR conditions/rules and (iv) set of services
such as services based on a combination of data streams from home automation
and (electrical) vehicles to pro-vide enhanced local weather forecast and predict
and optimise energy consumptions in households. The project will build upon the
results from past and current projects, where results from the project AutoMat,
addressing services developed based on data streams from vehicles, will be used
as a basis for further development aiming to extend it to integrated, cross-sectorial
data streams analytics. More information is available at https://cross-cpp.eu

Every effort has been made to ensure that all statements and information
contained herein are accurate, however the Cross-CPP Project Partners accept no
liability for any error or omission in the same.

© 2020 Copyright in this document remains vested in the Cross-CPP Project
Partners.

https://cross-cpp.eu/

	Introduction
	Purpose
	Audience
	Scope
	Troubleshooting
	Contact

	Contents
	Guide
	1. Sending Data Process
	1.1. Register the Company Backend into the Cloud Storage
	1.2. CPP Owners registration
	1.3. Data Storage
	1.3.1. Time-series
	1.3.2. Histogram
	1.3.3. Geo-histogram
	1.3.4. Event based
	1.3.5. General purpose
	1.3.6. Basic CPP information

	2. Common Industrial Data Model (CIDM)
	2.1. Model Architecture
	2.2. Signal Layer Specification
	2.3. Measurement Channel Layer Specification
	2.4. Data Package Layer Specification
	2.5. Measurement Channel Catalogue

	3. Cloud Storage API Specification
	4. SDK
	5. Context Monitoring and Extraction (CME)
	5.1. Context Models
	5.1.1. Basic principles for context modelling
	5.1.2. Generic context model
	5.1.3. Creating/Editing of context models

	5.2. Reasoning Rules Configuration
	5.2.1. Extraction rules configuration file
	5.2.2. Source code customisation

	5.3. Updating the context model and measurement channel list

	F.A.Q.
	Cross-CPP data-marketplace
	Cross-CPP data model
	Cross-CPP marketplace components

	Glossary
	Figures
	Tables
	Listings
	Annex
	OpenAPI Specification of the Company Backend REST API (yaml)
	CIDM v1.2.1 jsonSchema

